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INTEGRATION OF CONTROL EQUATIONS AND THE PROBLEM 
OF SMALL T IME CONSTANTS 

S UMMAR Y 

A system of first-order , linear differential equations with constant 
coefficients is transformed into a convenient and considerably simplified system 
of differential equations , referred to as the canonical equations. Alternatively , 
a transfer function in the form of a rational function is represented by a like 
system of canonical equations. 
provided the forcing function Ein can be conveniently represented. 
the canonical equations which depend upon poles (eigenvalues) of large magni- 
tude may be discarded when it is evident, as is often the case,  that the contri- 
butions of their solutions to the response Eout of the system a r e  negligibly 
small. 
numerically with a larger integration step-size than that which would ordinarily 
be required. 

The latter equations can be readily solved 
Furthermore, 

The elimination of such equations enables one to  integrate the system 

Often it can not be easily decided which, i f  any, canonical equations 
can be discarded and, furthermore, Ein can not be simply represented and may, 
in fact, not even be predictable as in cases in which it is related to Eout through 
a system of nonlinear differential equations. Such cases a r e  treated by assum- 
ing Ein to be a linear function of time over short  time intervals ht; that i s ,  E 

in is expressed as 

on the interval 

T 5 t 5 T + At. 

Assuming the values of all significant variables to be known at time T ,  
the solution Eout( T + At) to the canonical equations is expressed analytically 
in terms of the unknown quantity Ein( T + At) .  The analytical expression for 
Eout ( T + At)  is then substituted into the nonlinear differential equations, 



thereby effectively eliminating the variable Eout. from the problem. The re- 
sulting set of nonlinear differential equations may be integrated numerically. 

The important advantage , derived from determining E. analytically and 
In. then eliminating i t ,  is  the very significant increase in the numerical integra- 

tion step-size frequently made possible, especially when the given system of 
linear differential equations has eigenvalues of large magnitude (or , 
equivalently , small time constants) . 

A s  a by-product of the theory, one obtains the relationship of the 
eigenvalues and eigenvectors of a linear system of differential equations to the 
poles and coefficients of the corresponding transfer function. 

Two illustrative examples of problems with small time constants a r e  
given, and subroutines for implementing the theory on digital computers a r e  
described. 

I NTROD UCT I ON 

This paper is concerned with the numerical integration of systems of 
equations that have the following form: 

Differentiation is with respect to time t ,  L( f )  signifies the Laplace transform 
F(s)  of the function f ( t )  , and p ( s )  and g ( s )  a r e  polynomials in s such that the 
degree of p is equal to or  less  than the degree of g. 

Equations ( i )  occur frequently in the simulation of control systems. 
The subsystem composed of ( la )  and ( i b )  represents a system of nonlinear 
differential equations such a s  the equations of motion of a space vehicle, 
whereas the transfer function p ( s ) / g ( s )  in ( i c )  represents a system of linear 
differential equations with constant coefficients which define a response function 
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Eout( t) in terms of a forcing function Ein( t)  . 
filters, actuators, and some other components of control systems by means 
of transfer functions. ) 

(It is common to represent 

Very often control engineers are surprised to find that numerical integra- 
tion of equations ( I )  requires a pl-ohibitively small integration step-size even 
though the dependent variables do not appear to vary rapidly enough to warrant 
such a small  step. In an earlier paper [ I ]  the author discussed a frequent 
cause of such difficulty and showed how the problem could be treated. The 
present paper formulates the theory from a point of view more familiar to  the 
engineer and more general in application. Much use has been made of experience 
gained from the extensive use of techniques previously developed [ I]. The theory 
may be applied to  advantage even when a small  integration step-size is not re- 
quired. 
the linear equations vary slowly with time. 

Furthermore, i t  is applicable to  the case in which the coefficients of 

Other papers dealing with very similar problems are cited in the 
Reference section [ 2-12]. Reports [ 2-41 describe analytical solutions which re- 
quire elaborate coupling of first- and/or second-order linear differential 
equations. The method of Steinman [3 ]  has the advantage that it i s  not seriously 
affected by time variant coefficients. 
to that of the present paper, but leaves much to  be desired in effecting practical 
solutions. The methods given by Vasileva and Volosov [7-111 are promising 
but have received little use: They treat systems of differential equations which 
may be nonlinear and which include equations having small  parameters as 
coefficients of the higher derivatives. 

Certaine [6]  has an approach similar 

The appendix of Andrus [I ] contains a method for removing several  
large poles from a system of linear differential equations when it is known 
that terms in the solution, which correspond to these large poles, are insignifi- 
cant. 

Another approach which can effect some time savings involves partitioning 
the differential equations into two or more subsystems and integrating each 
subsystem with a different integration step-size depending upon the response 
time of the subsystem. 
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THE NUMERICAL EFFECT OF SMALL T IME CONSTANTS 

Solutions to systems of linear differential equations with constant 
coefficients contain terms of the form aeAt where a and A are rea l  or complex 
numbers. (The constant A is often called a pole or eigenvalue of the system, 
and the reciprocal of I A (  is known as a time constant when A is a negative real 
number. ) Many numerical methods of integration are derived under the 
assumption that the solution can be expressed over an  interval from T to T + 4t 
as a Maclaurin series 

truncated after several terms. However, i f  I h I is large,  many terms of the 
series may be required to represent aeAt accurately. 
of eAt is 

The Maclaurin expansion 

e h ( t +  4 t )  = eAt Li + - AAt + +..j . 
i! 2! 

Since I AI - At cannot greatly exceed unity in order for  the ser ies  to be truncated 

, the maximum acceptable after several t e rms  and still approximate e 
integration step-size is approximately equal to 1/ ( h  I 
magnitude of the pole of largest absolute value. 
of integration is not based directly upon a Maclaurin expansion, the large 

magnitudes of higher derivatives of ae 
large. 

A ( t + A  t )  

where I A  I is the 
max’ max 

Even if  the numerical method 

A t  
may still cause Ciificulty when Ihl is 

A t  Often the coefficient a is so small in magnitude that the term a e  gives 
r i se  only to  negligibly small variations in the solution ( see  Appendix A, Example 
2) .  However, if 1 A I is large, the higher derivatives of aeht can still be so 
large in magnitude that one is forced to integrate with a very small integration 
step-size. 

DEFINING THE RESPONSE OF A TRANSFER FUNCTION B Y  MEANS 
OF A SYSTEM OF FIRST-ORDER LINEAR DIFFERENTIAL EQUATIONS 

Suppose that the transfer function L ( EoUt)/L( Ein) has been separated 
into partial fractions: 
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n. 
'i j 

n. -j+l 
L(Eout) = . + E  c' 
L( Ein) i=l j = l  ( s -A . )  1 

1 

where c ,  yij, and Ai are constants and yij and h i  may be complex. 
quantities hi( i = I, 2,  . . . 
a pole of multiplicity ni. It will be shown that the following system of differential 
equations has the same transfer function: 

The 
n) a r e  the poles of the transfer function, and is 

n ni 
= c E  + h.. 

Eout in i=i j = i  'J 

w h e r e i = i ,  2 7 . . . 7  n. 

On taking the Laplace transform of the members of (3b) and (3c) one 
obtains : 

J-J( Ein) 
'i i L(h  ) = -  

il S -A. 
1 

for j = 2 ,  3,  . .. n Then 
i' 
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I I I I IIIlll1l111llIlll I l l  I I I I l l  

'ik -'i, k- 1 "i2 -'ii 
+... + SLAi I..*+[ ( s 4 )  n. 1 + (s-Ai) n. 1 -1 

Simplification yields 

"i2 n. 

f L(h. . )  = n.-I + +...+ - 
j +I 1J + A i )  1 

The transfer function ( 2 )  may be easily derived from (3a) and (4). 

Since equations (3)  have the transfer function ( IC) , the solution to (3)  
is the solution defined by the transfer function. 

If the transfer function ( IC)  has only real  coefficients, then corresponding 
to the equations (3b) and ( 3 c )  , where A i  is any complex (non-real) pole, there 
a r e  the redundant equations 

also present in ( 3b) and (3c) .  Here the symbol X stands for the complex con- 
jugate of x. 

hk A more important observation is the following: If I %I is large and 

is negative ( in  a stable system there can be no positive poles),  it is often true 
that the te rms  , corresponding to h a r e  negligibly small. (The relative hki i' 
magnitudes of the constants y..  (i = I, 2,. . , n; j = I, 2, . . . , n.) may be the 

1J 1 
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deciding factors in such a case. However, the nature of E 
If h . is negligibly small fo r  j = I, 2, . . . , n 

entia1 equations of (3 )  may be discarded and the remaining equations integrated 
numerically using a larger  integration step-size. However, if the contributions 
of the terms 

eliminated, because in such a case a small step-size is intrinsically necessary 
to determine the rapid responses of the solution E 

case it is often possible to increase the step-size significantly by assuming some 
form from E 

cally rather than numerically. 
the analytic solution to (3 )  and the manner in which it may be tied in with the 
numerical integration of the nonlinear equations of ( I )  . 
in this paper i s  employed, one need not concerned himself with eliminating 
negligible equations; the analytic solution essentially enables one to hop over 
negligibly small variations in E 

is also important. ) 
then the corresponding differ- in 

kJ i' 

a r e  significant, the numerical problem cannot be completely 

But even in the latter 

% 
out' 

over short time intervals and integrating equations (3) analyti- 

The remainder of this paper is concerned with 

If the solution derived 

in 

out' 

In passing, we remarkthat when1 A. I is large, the equation h -h.h. =y  E 
1 il 1 il il in 

and similar approximations are 

REPRESENTATION OF 
SHORT 

Some form for Ein must 

discussed by Cohen [12]. 

Ein A S  A LINEAR FUNCTION OVER 
INTERVALS OF T I M E  

be assumed before equations ( 3 )  
integrated. The functi0FEin will be approximated over the time 
T to T + 4 t  by means of the line passing through the two points 

[ T ,  Ein ( T I ]  [ T +  4 t 3  E i n ( T +  At)] * 

The corresponding expression for Ein is 

t-T 
Ein(t) = Ein(T) + - [Ein ( T +  4 t )  - E i n ( T ) ] .  A t  

can be 
interval from 

( 5 )  

Of course it would be possible to represent Ein(t)  in other ways. 
expression has been chosen in order to keep the integration formulas to be 
derived as simple as possible. 

The linear 
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ANALYTICAL INTEGRATION OF THE LINEAR EQUATIONS 

Assume that equations ( 3 )  have been integrated up to time T and that 
values of Ein( T) and Ein( V4t) have been given. 
means of (5)  over the time interval from T to T + At, we will derive an ex- 
pression for Eout at T + At in te rms  of Ein(T) , Ein(T+ht) ,  and hi j (T)  where 
i = I, 2, . . . , n and j = I, 2, . . . , ni. 
with the numerical integration of equations ( ia )  and ( lb)  . 

Approximating Ein( t) by 

Later this expression will be tied in 

Specifically , we will integrate the equations 
/ 

from time T to T + At  in order to obtain hij( TtAt)  in terms of Ein( T)  , 
Ein ( W A t ) ,  $ i ( T ) ,  h i2(T)9-**9 hini(T). 

For simplicity a new time variable T = t - T is introduced. Let 

and similarly for the functions Eout and hij. 
will have its origin at t = T. Then 

In other words, the variable T 

Letting T be the independent variable and taking the Laplace transforms of (6)  
and (7) , one arr ives  at the following equations: 

E. [ A t ]  - Ein[Ol 
( j  = 2 , 3 , .  . . 

nil 
1 1 In 

4t = - Ein[O1 + 2 in s 

a 



Let 

Po = Ein[ol 

After eliminating L(  Ein) and employing (8) , one obtains 

L(hi i )  = - h i p ]  + Yii  

( j=2 ,3 , .  . . ,ni) 

Successive substitutions yields 

f o r j = i ,  2 ,  ..., n . a n d y .  = O .  
1 10 

Assuming # 0 and separating into partial fractions, one obtains 

i + I j -k+i 

j -k-a!+2 a! j-k+ i 
(S-hi) (-hi) S 

j-k+i 
I + j-k+l - j-k-a! + 2 

j-k+2 
S j -k-a! + 3 a! 

(s-h.) 1 (-hi) s (-hi) 
+ '1 ('ik-yi, k-1 

9 
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The inverse Laplace transform is 

j-k A* hik 101 . T 

( j -k) !  

e 1 

I a-I A.r 
+ T e i  

j-k-a+2 j-k+i 
a=i (-Ai) ( a - I ) !  (-Ai) 

a-I  A . 7  
j-k+l + 7 - e 1 

j-k-a +3 j-k+2 j-k+l 
( a - I ) !  (-Ai) ( -Ai) 

'i, k-i 
+ 1 (Yik- 

for A. f 0. 
1 

Evaluating h.. at T = At and rearranging, one obtains 
11 
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. . -. . .. .. . .. . .... . . . , , 

where p = j-k+i and hi f 0. Therefore, 

where 

where A. f 0 and the summation 'E2 is nugatory when p = 1. 
1 

a! =O 

When lAiAt I n i  is much less than unity, in order to avoid subtraction of nearly 

equal numbers during the computation of b.. one should employ the 

following power series expansions: 

and b.. 
11 0 1 J i '  

-AiAt - yi ( -hiAt)a ( -AiAt) a! 
e a!  a! a =O a = p  



a! 1 -AiAt - 
Q! =O Q!=O 

Equation (9) also holds for the case in which h = 0. However, for this i 
case the coefficients (loa) must be computed as follows: 

Substitution of expressions (8) into equation (9)  yields 

where 
b.. 

b i j i  - A  - 
At  . c.. = b.. - 110 130 At  ’ ‘ijl 

According to (3a) 

12 



Equations (11) and (12) may be rewritten in te rms  of T as follows: 

(13) 
j 

p=1 
(T) * a. + E (T) c.. + E. ( T + A t ) * c . .  

13 1 i p  in 130 in ( T +  At) = h i , j - p + l  

Equations (13) are the desired integration formulas. A s  long as At and the co- 
efficients of the transfer function (2)  are constant, the coefficients c,  a i p' 

and c.. will be constant. 
11 1 

C.. 130' 

One can compute E and E from 
0 ut out 

n 

n n i 
E (t) = CE (t) + c hij 

0 ut in i=l j = l  

where h.. and h.. may be computed from equations (3)  
13 13 

In most problems ni = n2 = . . . = n = I .  ' n  Then (13) reduces to 

where 

I .. 1 

i l l  
b 

-- - bii i - 
' i I O =  bi10 At ' 'ill At 

13 



and where 

when A .  f 0 and 
1 

whenh = 0. 
i 

TIE-IN OF THE ANALYTICAL SOLUTION TO THE 
NUMERICAL INTEGRATION OF THE NONLINEAR EQUATIONS 

Formulas (13) may be tied in to the numerical integration of the non- 
linear equations 

nd) 
E ) ( k = 1 , 2 ,  . . . ,  yk = yi, y2, Y 9 Ein7 out * * 7 

nd 

in a rather simple manner. 
out 

equations by substituting the righthand member of the first of equations (13)  for 
Assuming the equations have been integrated up to time T, we may write 

Essentially E may be eliminated from these 

Eout' 

for t > T, where At  = t - T and 

14 



h.. 11 = h i,j-p+l (T)  ' aip + Ein (TI cij0 + Ein * cij1, 

and similarly for the equation E 

integrated numerically in  the ordinary manner. 

= +. Then the differential equations may be in 

If E. is,continuous, the approximate solution obtained by the method in 
proposed in this paper will approach the exact solution as At approaches zero. 

THE CASE OF LINEAR EQUATIONS HAVING TIME 
DEPENDENT COEFFICIENTS 

If the coefficients of p ( s )  and g ( s )  in the transfer function (IC) vary with 
time, then c ,  A. and y.. will also be time dependent. 

treated by the methods proposed, provided A t  is chosen sufficiently small so 
that c,  A. and y..  may be assumed to be constant over each At interval. 

This problem may be 
1 11 

1 11 

DERIVATION OF THE ANALYTICAL SOLUTION DIRECTLY 
FROM A SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS 

Suppose that the relationship between Ein and E is expressed by means 
out 

of the equations 

rather than by a transfer function. 
constant elements, the symbols - q, b_, and 2 represent m x I vectors of constants, 

Here A symbolizes an m x m matrix of 

15 



T 
u 
briefly how equations (3) can be derived from (14) employing classical methods 
for the solution of linear systems. 

is the transpose of g, and w is a scalar constant. It will now be  shown 

It is proven in elementary matrix theory that there exists a nonsingular 
matrix S such that 

S-IAS = J 

where J has the form: 

J =  .. 

where the 0's  represent rectangular a r rays  of zero elements and 

are eigenvalues of A and are not necessarily Pn The constants pl, p 2 ,  . . . , 
distinct. The matrix J is known as the Jordan canonical matrix. 

16 



T 
Defining E = S1 g, g = S I  b,  - and - vT = - u S, the above equations may be expressed 
as follows: 

Decompose the vectors E, g, and 1 in the manner indicated below: 

T T T  
) 7  

T -  - v - (El ,E? Y . . * ’  v -ne 

where%, $, and 1 v. (i = i, 2 ,  . . . , n 3  are n’ i x I vectors. Now equations (15) 

may be broken down as follows: 

( &  .= J: 1 % + E i n %  
(i = i, 2,  . . . ,  n’) 

\ E ~ ~ ~ =  w - E  + n’ 3 T 

i=i in 

Letting 

- (Pii’ Pi2’ * - ’ Pin?) ’ 
1 

qT - 

17 



one may obtain the equations 

f o r i  = 1 ,  2, ... , n * .  

Now let f.. = v. .p.. and multiply the differential equation defining p.. 
11 1.l 1.l 1.l 

1.l 
through by v. .. Thus 

Assuming ~ ( 0 )  = 0, it is obvious that f.. (0) = 0. 

may now be obtained in the same manner as the solution to equations ( 3 ) ,  

The analytical solution of (16) 
1.l 

The transfer function of (16) is 

are distinct, one may identify f.., pi, w, nc, n: and Pn 1.l 1 
Provided p1 , p 2 ,  . . . , 
j 

v g. with h.., A c ,  n, n and y.., respectively. However, in the rare 
ik lk 11 i' i' 11 k = i  

event that the p.'s are not distinct, the identification is somewhat more com- 

plicated. (For example, i f  pi = p and p. f p .  for j Z i ,  k, then max (n; , 
must be identified with n. and \ is zero. ) 

1 

nkC) k 1 . l  

1 
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m I For the case n. = I ,  the vectors_si, and - r i' are simply right and left 
'F 1 

eigenvectors of A corresponding to the eigenvalue A. such that c1 s = I. 
1 il-il 

Therefore, for the usual case in which n. = I for i = I ,  2, . . . , n, the coefficients 

i l  'ii 
to (2 s. ) - (gT b )  provided p.  f p for i f k. L€ b_ has all zero elements except 

-11 il - i k  
one -- say the first element b, of b -- then 

1 

may be determined from the eigenvectors of A; in fact, y would be equal 
T 

- 

where the first element of the eigenvector r is arbitrarily chosen to be unity. 

Equation (17) also establishes a relationship between the eigenvectors of A and 
the numerators of the partial fractions of the transfer function ( 2 ) .  

-il 

CONCLUSIONS 

Equations (13) provide a simple integration formula for determining the 
response E 

forcing function E 

Analytical Solution to the Numerical Integration of the Nonlinear Equations'' shows 
how equation (13)  may be easily tied in with the numerical integration of other 
differential equations relating E 

at time T + At, of the transfer function (2) from values of the out' 
at times T and T + At. The section entitled "Tie-in of the in 

to E in 0 ut 

The coefficients in (13)  depend upon At and the coefficients of the transfer 
function in the manner shown in  equations (loa) and ( lob ) .  
section entitled "Derivation of the Analytical Solution Directly from a System of 
Linear Differential Equations'' derives the relationship of the coefficients in ( 13) 
to the eigenvalues and eigenvectors of the coefficient matrix A of the system (14) 
of first-order linear differential equations. 
pendence of the coefficients of the transfer function upon the eigenvalues and 
eigenvectors of A .  ) The coefficients of (13) must be recomputed if either At or 
the coefficients of (2)  , or the alternate equations (14) have changed significantly. 

Furthermore, the 

(Indirectly, this also gives the de- 

The integration formula (13) very often enables one to integrate numerically 
a system of control equations such as ( I )  at a much larger integration step-size 

19 



than the largest which could be used by conventional methods, especially when 
the transfer function has poles of large magnitude. 

Use may also be made of the first-order differential equations (3) which 

out in 
define E 

high derivatives of a single variable). 
nitude is present, equations ( 3 )  provide a simple means for determining E 

They may be integrated numerically, simultaneously with other differential 
equations, and they may be solved analytically when E is available as an 

explicit function of time. 

often possible to eliminate it by simply removing from (3)  the equations corre- 
sponding to A However, a careful analysis of the particular problem should be 

made before any equations are eliminated. 
most convenient to utilize the integration formula (13), which is likely to be a 
faster method even when poles of large magnitude are not present. 

very concisely in terms of E (without introducing troublesome 

If no difficulty with poles of large mag- 

out' 

in 
When a pole A. of large magnitude is present, it is 

1 

i' 
For this reason one may find it 

20 



APPENDIX A 

EXAMPLES 

Example 1 

A problem in which the forcing function is given explicitly by 

E = s ina t  in 

will now be examined. In this case equation (3  b) is 

sinat.  - - 
hil - Aihii Y i  i 

Assuming h. (0 )  = 0 and integrating, one obtains 
1 

lhii (t) I 5 

'i i A i  t 
hil( t)  = A.2 + a2 ( a e  - acos  at - A. s i n a t ) .  

1 
1 

'i i 

Ai 

- 

I f A i  < 0 ,  

In particular, consider the problem in which a = i and the transfer 
function is 

4s3 + 233s2 + 998s + 5440 
L(Eout)/L(Ein) = -- 2s4 + 224s3 + 2444s2 + 440s + 4000 

I + --* + -  I -(5/4) Gi  + ~- - - (5/4) m 
s+l+ps_-i- s +  1 -a s +  10 s +  100 
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to 
Po I -1.2 

I 
-1.0 

-0.81 

-0.6 

-0.4-- / \\ 1 

t 2n 

-0.2-1 

- 
\ 

-0.2-. 

-0. 4-- 

-0.6.~ 

-0.8.; 

-1.0, 

-1.24 

FIGURE A-I .  E (t) O F  EXAMPLE 1 AS A FUNCTION OF t out 



H = Henries, K = Kilo-Ohms, mfd - Micro-Farads 

FIGURE A-2. ELECTRICAL NETWORK REPRESENTING A FILTER 



Eout 

.002 

.001 

0 

Runge-Kutta: A t  = .006 Sol id  Curve . 
At = .007 Diverged 

Analytic Solution: A t  = .02 So l id  Curve 
A t  = .06 Dotted Curveoooo 
A t  = .2 Dashed Curve - - - - - 

t 

FIGURE A-3. Eout OF EXAMPLE 2 AS A FUNCTION OF t 
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Therefore 

It follows that 

3 hi, (t) + h,, (t) = 8 [ e-t (2 cos t + sin t )  - 2 cos t + sin t 

- I O t  - cos t + 10 sin t) I 
h3i (t) = (e 

-loot - cos t + 100 sin t ) .  h41 (t) = E (e 
i 

In Figure A - I ,  hi, (t) + h,, (t) h3, ( t ) ,  and E (t) are plotted as 

functions of t. Inequality (18) reveals that 1 h4i I 5 0.0102. Therefore, the 
variable h,, (t) is too small in magnitude to be plotted on the same scale, and 
yet the largeness of IA4 1 would make it necessary to use a numerical integration 
step-size roughly equal to 0.01. A step-sizeof 0. 1 could suffice if the differential 
equations defining h4i were eliminated. 

out 

Example 2 

The electrical network shown in Figure A-2 is a filter used in an actual 
control system of a space vehicle. It has been represented by a system of nine 
differential equations having the form indicated in (14). The response E was out 
determined by means of the integration formula (13) where E was defined by 

in 

E = sin (27rt). in 

Linear interpolation was used to approximate E over each At time interval. 

Time increments of At = 0 . 2  sec, At = 0.06 sec, and At = 0.02 sec were 
employed. 

Runge-Kutta method of numerical integration using At = 0.006 sec. 
technique diverged when an increment of At = 0.007 sec was employed. 
results of the comparison are shown in Figure A-3. 

in 

For comparison the integration was also performed by the fourth order 
The latter 

The 
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APPENDIX B 

MATHEMATICAL SUBROUTINES 

Subrout ine  for Decomposition of a Rational 
Fraction i n t o  Par t ia l  Fractions 

Input Data. 

number of real poles 
NR 

A. ( i = l ,  2 , . . . ,  NR) distinct real poles 
1 

n. ( i =  1, 2 , .  . .  , NR) multiplicities of real poles (usually n = 1) 
1 i 

one-half the number of complex poles 
NC 

Re  (12.) , Im (12.) ( i = l ,  2 , .  . , NC) real and imaginary parts of complex poles 
1 1 

M degree of numerator of rational fraction 

a (k = 0 ,  1, . . . , M) coefficients of numerator k 

Note: A pole is defined to be a root of the denominator of the rational fraction. 
All complex (non-real) poles are assumed to be distinct. The conjugate 
of each complex pole given in the input data is also a pole. 

The rational fraction must have a numerator of smaller degree than the 
denominator. 
nominator is assumed to be unity. 

The coefficient of the term of highest degree in the de- 

Definition. We define the polynomials 

M-1 + 

M 
. . .  + a  s + a  

M- 1 p ( s )  = a,sM+ als 
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hi(s) = 

where 

k =  I ( s -  hk) - [ k =  :c i ( s 2 + b k s + c  ) NR) 
NR 

k n 

(k # i )  

bk = -2Re ( A  k ) , c k =[Re(Ak)l2 + [Im(A,)] . 

Computation. Compute 

NR' for i = I, 2, . . . , 

Compute the complex numbers 

Qi = 

where 

A .  = 
1 

Compute 

NC) (i=l, 2 , .  . , P V i )  - 
NR ( h i -  Ak).*] . [ :c (A2. + b k i  h + Ck)  l-I 1 
k =  I (k # i )  - 

Re(h . )  + -Im(Ai) ( i =  I, 2, . . .  , N ) are complex. 
1 C 

- - , ri2 - - -ril * [ Re(hi)]  + Re(&$ 
WQi) 

ril Im(Ai) 

NC for i = I, 2, . .  . , 

27 



Output Data. 

coefficients of 
numerators of 
partial fractions 

; j = I ,  2,  . . . , ni) ' NR ( i =  I ,  2, .. . 'i j 

rii 3 r2i NC' 
( i =  I ,  2, ..., 

Analysis. The procedure described above decomposes the rational fraction 

M-I + . . . + aM-ls + a 
M 

;b s + ais 
-M__ 

( s 2 + b  s + c  ) k k 

n 

k =  I k =  I 
(' - 'k) 

into partial fractions: 

n 
'kj rkl s+ rk2 N~ 

k 
+ 

s 2 + b s + c  k 
n k - j +  I 

k = l  j = l  (s - Ak) k = l  

k 
It is assumed that the rqots of s2 + b s + c are the given complex numbers A 

and A conjugate. It is also assumed that the numerator of ( I )  has lower degree 
k k 

k 
than the denominator, that the real roots hi, A2, . . . , A are distinct, and 

NR 
that there are no repeated complex roots. 
standard. 

The method of decomposition is 

Subroutine for Computing Coefficients Defining the 
Response of a Transfer Function 

Input Data. 

NR 

A .  (i  = I ,  2 ,  . . . Y NR) 
1 

number of real  poles 

distinct real  poles 
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n. (i = I, 2, . . . , ni) multiplicities of distinct real poles 
1 

N ; j=l ,  2 , .  . ,ni) numerators of partial fractions y. .  (i=I, 2 , .  . . , 
corresponding to real poles R 1J 

one-half'the number of complex poles 
NC 

Re ( A . )  , Im ( A i )  ( S I ,  2,.  . , Nc) real and imaginary parts of complex 
poles (It is assumed that there are no 
repeated complex poles. ) 

1 

coefficients of numerators of partial 
fractions corresponding to complex poles NC' rily ri2 (i = 1 , 2 , . .  . , 

At time interval 

Computations. Compute 

?R 
i=l ,2 ,.. , 

j=1,2,. . , n j  

j - I  AiAt 
- fat) e a.. - 

1.l ( j  - I)! 

AiAt /3-2 (-hiat) 
1-e a! 

CY =O 

assuming A. f 0, where y is defined to be zero. The sum . is zero when 
CY=O 

1 i o  
p =  I .  
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n 
i 

If Ihi * At 1 

be computed by means of the series 

< 0. Oi, then the term in brackets in  the expression for b.. should 
11 0 

(-A.At) a! 

CY! 
ehiA 2 1 

a = p  

and the te rm in braces is the expression for b.. should be computed by means 

of the series 
11 1 

( -A.At)a 1 

a! - - e 
CY=p+l 

Whenh. = 0, compute 
1 

where, again,y = 0. i o  
Also compute 

f o r i =  I ,  2, . . . ,  N a n d j = l ,  2 ,  . . . ,  n .  
R i 
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Compute 

Re (Ai) * At 
R e ( A . )  = e cos Im(A.) .  At 

1 1 

Re(hi) . At 
Im(Ai) = e 

Re(r;) = ri1/2 

riO 
(Ai - I + hi . At) - -  - 

B i i  Ai2 

Bii 
‘io - B i O  At ’ ‘il At 

- -  - - Bii - 

are complex numbers. 
B~~~ r; ’ Ai, Ai ,  cia, ‘ii 3 

where B 

If IA.Atl < O . O l ,  compute 
1 

NC’ (i=1,2,.. , 

by series as indicated. 
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Output Data. 

, . . ,  NC 

l coefficients defining 
the response of a 
transfer function 

Analysis. 
the paper. 
sponse of a transfer function of the form 

The derivations of the coefficients are contained in the main part  of 
The coefficients are for use in a subroutine for determining the re- 

'kj rkl s+ rk2 N~ k 
n 

L (Ein) k = l  j = l  ( s -h  ) k = l  k 
i- 

s 2 + b  s + c  k 
nk-j + I 

k 

Subroutine for Determining the Response 
of a Transfer Function F(s) 

Input Data. 

NR number of distinct real poles 

one half the number of complex poles NC 

n. (i = I ,  2 ,  . . . , NR) multiplicities of real  poles (usually n = I) 
1 i 
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c (c is usually zero)  

coefficients 

(i=i,  2 , .  . . , N ; j = i ,  2 , .  . .,ni) a.. ,  11 cijo7 ciji R 

NC) 

NC) 

NC) 

Re(Ai), Im(A.) ( i = i y 2 , . . .  , 

Re (Cia' , Im (C. ) @=Iy 2, .  . . , 
Re(Cii) ,  Im(C. ) ( i = i , 2 , .  . . , 

1 

10 

11 

Ein (T) 

initializing 
conditions 

h. . (T)  

Re[ Hi(T)] , Im[ Hi(T)] 

(i=1,2, .  .. , NR; j = i ,  2, .  . . ,ni) 
11 

NC) ( i = i ,  2 , .  . . , 

Ein (t) current value of forcing function 

Computations. 

Here Hi( t )  , Hi (T) , Ai, Cio, and C are all complex. 
ii 

Note on-Handling of Input Data. 
to computethe responses of many linear components of a control system, and 
since the coefficients may change from time to time for any given component, it 
is probably advisable to place each possible set of input data into an area of 

Since the subroutine may be used in oneprogram 

33 



common storage. 
data can be indicated in some manner. 

Then, at the time the subroutine is called, the desired set of 

Even if  the form of F(s) is left unchanged, more than one set of coefficients for 
the component may be required, because the coefficients are dependent upon the 
time interval At = T - t. And even if the basic integration step-size is constant, 
some methods of numerical integration will require evaluation of E 

fractional steps. 

incidental, and it is not required that these values be stored for future use. ) 

(t) at out 
(For fractional steps the computation of h. .( t)  and H (t) is 1J k 

Output Data. 

E (t) Response at time t out 

Analysis. Consider a transfer function 

new initializing 
conditions 

where c is a constant and f (s)  is a rational fraction in which the denominator 
has larger degree than the degree of the numerator. It is assumed that, before 
the subroutine has been called, the time histories of E have been 

determined up to time T and that the value of E. ( t )  for some time t > T has 

been specified. 
in 

time t ,  one may determine approximately, using this subroutine, the corresponding 
value E The derivation of the method employed is con- 

tained in the paper, which also explains how this subroutine may be tied in very 
simply with the numerical integration of differential equations other than those 
represented by (I). 

and E in out 

in 
Making the approximation that E is linear from time T to 

(t) of the response. out 

The initial conditions at time T are expressed by means of the input variables 
Ein (T)  , h.. (T)  , and Hk (T) . The behavior of f (s) is expressed by means of 

1J 
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the coefficients given in the input data. The assumption has been made that none 
of the complex (non-real) poles of f (s) are repeated. 

This subroutine can be used to determine the solution defined by any transfer 
function ( I )  with non-repeated complex poles, However, the primary purpose 
of the subroutine is to avoid the prohibitively small integration step-sizes re- 
quired by ordinary methods of numerical integration in the presence of poles of 
large magnitude. 
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